i gave my grandma two dollars to get me “an arizona tea and a Reese’s cup” and she brought me this and gave me my money back

this perfectly describes grandmas

My grandma would have given me a five and thrown in a new pair of shoes too.

im sorry i wasnt aware that this was the damn grandma olympics

Harry Potter Warner Brothers Studio TourI want to go there

i went a few weeks back and ended up crying cause of the meaning that it holds to me…its seriously amazing there.

Frankenstein enters into a body building competition and finds he has seriously misunderstood the objective

FOR THE LAST TIME, FRANKENSTEIN WAS THE NAME OF THE DOCTOR

…a doctor who built a body.

i srsly dont give a fuck about frozen

… Y’see, now, y’see, I’m looking at this, thinking, squares fit together better than circles, so, say, if you wanted a box of donuts, a full box, you could probably fit more square donuts in than circle donuts if the circumference of the circle touched the each of the corners of the square donut.

So you might end up with more donuts.

But then I also think… Does the square or round donut have a greater donut volume? Is the number of donuts better than the entire donut mass as a whole?

Hrm.

HRM.

A round donut with radius R

_{1}occupies the same space as a square donut with side 2R_{1}. If the center circle of a round donut has a radius R_{2}and the hole of a square donut has a side 2R_{2}, then the area of a round donut is πR_{1}^{2}- πr_{2}^{2}. The area of a square donut would be then 4R_{1}^{2}- 4R_{2}^{2}. This doesn’t say much, but in general and throwing numbers, a full box of square donuts has more donut per donut than a full box of round donuts.

The interesting thing is knowing exactly how much more donut per donut we have. Assuming first a small center hole (R_{2}= R_{1}/4) and replacing in the proper expressions, we have a 27,6% more donut in the square one (Round: 15πR_{1}^{2}/16 ≃ 2,94R_{1}^{2}, square: 15R_{1}^{2}/4 = 3,75R_{1}^{2}). Now, assuming a large center hole (R_{2}= 3R_{1}/4) we have a 27,7% more donut in the square one (Round: 7πR_{1}^{2}/16 ≃ 1,37R_{1}^{2}, square: 7R_{1}^{2}/4 = 1,75R_{1}^{2}). This tells us that, approximately, we’ll have a 27% bigger donut if it’s square than if it’s round.

tl;dr: Square donuts have a 27% more donut per donut in the same space as a round one.Thank you donut side of Tumblr.

This is the highest and best use of conic sections I have ever seen.

i wanna be a reverse tooth fairy where i rob people and then scatter human teeth on their bed

a dentist

i dont know what your dentist is doing to you but i think you need to go to the police